Overblog Suivre ce blog
Editer l'article Administration Créer mon blog
31 janvier 2012 2 31 /01 /janvier /2012 06:53

IRM Cardiaque 


Coupe axiale sur les ventricules

Généralités 


L’IRM cardiaque est un procédé d’imagerie reposant sur l’excitation des noyaux d’hydrogène de l’organisme par impulsions de radiofréquence, qui permet d’obtenir une image des organes intra-thoraciques sans limitation liée à la composition des tissus. Contrairement à l’échocardiographie pour laquelle la pénétration du faisceau d’ultrasons dans les tissus est entravée par l’interposition de tissu pulmonaire ventilé, empêchant une évaluation cardiaque satisfaisante chez environ 10% des patients, l’IRM cardiaque procure des images diagnostiques chez tous les patients, indépendamment de leur morphologie. L’acquisition d’un large champ de vision (field of view, FOV) permet une évaluation des structures thoraciques en plus de l’examen du cœur et des gros vaisseaux. L’IRM acquiert des images dans n’importe quel plan anatomique déterminé par l’opérateur, ce qui permet une imagerie adaptée à l’anatomie complexe du cœur et en particulier une évaluation morphologique dirigée des cardiopathies congénitales. Une caractéristique déterminante de l’IRM en cardiologie est sa capacité de caractériser les tissus mous pour détecter les pathologies du myocarde ; schématiquement, on utilisera les séquences en pondération T1 pour rechercher la présence de graisse, les séquences en pondération T2 pour l’œdème myocardique, et le rehaussement tardif après injection de chélates gadolinium (T1) pour la fibrose myocardique. En comparaison avec l’IRM d’organes statiques (par exemple l’IRM cérébrale), les défis de l’IRM cardiaque sont de représenter avec une définition maximale un organe se contractant de façon rythmique, et se déplaçant dans la cage thoracique tout au long du cycle respiratoire. Ces contraintes ont rendu nécessaire le développement de séquences d’acquisition rapides, synchronisées à l’électrocardiogramme, d’une durée de 15 à 20 secondes afin de permettre une acquisition en apnée. Il est de ce fait difficile d’obtenir des images de qualité chez un patient très dyspnéique ou incapable d’effectuer des apnées répétées. De façon analogue, un rythme cardiaque rapide (>100 bpm) ou très irrégulier (notamment en cas de fibrillation auriculaire, rythme bigéminé ou fréquentes extrasystoles), ou un signal ECG de mauvaise qualité réduisent sensiblement la définition des images. Le temps total d’acquisition d’un protocole standard d’IRM cardiaque varie entre 30 et 60 minutes. Il dure sensiblement plus longtemps qu’un CT scan cardiaque mais l’absence de rayons X est un bénéfice notable pour le patient, en particulier si des examens répétés sont à envisager. La station prolongée dans le tunnel de l’IRM peut être problématique pour les patients claustrophobes (environ 2% des patients), et reste contre-indiquée pour les porteurs de pacemaker, défibrillateurs implantables, implants cochléaires ou clips neurochirurgicaux. Il est recommandé de contrôler la compatibilité IRM des appareils ou prothèses implantées chirurgicalement dans un patient sur un site internet de référence9. L’injection de produit de contraste, gadolinium chélaté, est en principe contre indiquée pour les patients avec insuffisance rénale de degré IV selon la classification Kdoqi-CKD (débit de filtration glomérulaire estimée inférieure à 30 ml/min)10 en raison du risque de fibrose systémique néphrogénique, une maladie invalidante de la peau, ressemblant à la sclérodermie11,12. Ce risque a été très fortement diminué et pourrait même disparaître avec le recours à des produits de contraste dits cycliques. Les chélates de gadolinium sont également contre-indiqué de principe chez la femme enceinte.

Techniques d’IRM et séquences 


Analyse de la morphologie 

Echo de spin : images « sang noir » 

Une série de 10 à 15 coupes transverses de 5 à 10 mm d’épaisseur, avec espace entre les coupes de 0 à 5 mm, acquise durant la diastase (acquisition en phase unique), permet l’évaluation initiale de l’anatomie thoracique ainsi que de la disposition des cavités cardiaques et de leurs connexions. En cas d’anatomie complexe, on y ajoute fréquemment une série de coupes sagittales et une série de coupes coronales afin de mieux préciser les relations anatomiques. Une série de coupes sagittales obliques est parfois nécessaire pour préciser l’anatomie de l’arche aortique. La séquence utilisée est le turbo spin echo, une séquence d’écho de spin rapide dont le train d’écho comporte entre 9 et 15 impulsions de rephasage de 180 °, produisant à chaque rephasage un écho, réalisant une ligne d’encodage de phase différente. La séquence est précédée d’une double impulsion d’inversion (180 °), l’une non-sélective et la seconde sélective à la coupe, permettant d’annuler le signal du sang circulant13,14. Ces images sont caractérisées par une forte pondération en T1 avec un excellent contraste entre le pool sanguin, hypo-intense (noir), et les structures vasculaires et musculaires, plus intenses. On parle donc de séquences en sang noir ou black blood. La durée d’acquisition de ce type de séquences est relativement longue, car la répétition d’impulsions de radiofréquence (impulsions d’inversion de 180 °) est nécessaire pour rephaser le signal et produire un écho ; en contrepartie, cette séquence est peu sensibles aux artefacts de susceptibilité que peuvent causer les structures métalliques (stents, cerclages de sternotomie…). Le contraste entre le sang circulant et la paroi vasculaire est en général bonne, mais l’annulation du signal sanguin peut être imparfaite (pool sanguin incomplètement noirci) dans les cavités où le flux sanguin est ralenti (veines pulmonaires ou systémiques, conduits veineux obstrués, thromboses, ventricule fortement dilaté…) pouvant résulter en une mauvaise délimitation endothéliale.

Séquences bSSFP : images « sang clair » 

Dans le cas où les images en « sang noir » sont équivoques, la morphologie peut être précisée en répétant les mêmes séries de coupes axiales, sagittales et coronales en utilisant une séquence en écho de gradient de type bSSFP (balanced steady-state free precession), particulièrement peu susceptible aux artefacts de flux. Il s’agit d’une séquence d’acquisition très rapide en mode de phase unique, qui produit un signal d’écho sans appliquer d’impulsion de rephasage, mais en inversant simplement la direction du gradient d’encodage de fréquence. L’inversion du gradient de champ magnétique étant nettement plus rapide que l’application d’une nouvelle impulsion de radiofréquence, ces séquences de type écho de gradient permettent d’accélérer sensiblement la production des signaux et l’acquisition des données. La bSSFP est la séquence d’écho de gradient la plus utilisée en IRM cardiaque en raison de son contraste élevé et de son important rapport signal / bruit. Le contraste est fonction du rapport T2/T1 des tissus ; le sang présent dans la cavité ventriculaire apparaît donc clair, avec une excellente délimitation endothéliale, indépendamment du flux sanguin15. On parle d’imagerie en « sang clair » ou bright blood. Cette séquence, comme toutes les séquences d’écho de gradient, est en revanche susceptible aux inhomogénéités du champ magnétique et l’on observe fréquemment une perte de signal (signal void) au voisinage des stents ou d’autres structures métalliques.

Acquisition tridimensionnelle bSSFP 

Alternativement, il est possible d’obtenir une évaluation anatomique des structures cardiaques non pas par séries de coupes successives, mais par l’acquisition directe d’un volume qu’il sera possible d’interroger à loisir dans différents plans au moment de l’analyse. Pour permettre ces reconstructions et garantir une résolution spatiale suffisante, il est primordial d’acquérir des voxels isotropiques, c’est-à-dire ayant la même dimension dans les trois plans. Les coupes standard ont une résolution de 1-2 x 1–2 mm dans le plan et une épaisseur de coupe de 8 à 10 mm produisant des voxels en forme de parallépipèdes rectangles. L’acquisition volumétrique implique un encodage de phase dans deux directions différentes, rallongeant sensiblement le temps d’acquisition ; avec l’utilisation de séquences rapides de type bSSFP, le temps d’acquisition du volume cardiaque est de l’ordre de 3 à 4 minutes pour une résolution isotropique de 2,1 mm16. L’acquisition se fait en respiration libre, et les artefacts de mouvement liés à l’excursion diaphragmatique sont réduits par l’utilisation d’un navigateur, une séquence IRM rapide détectant au début de chaque cycle cardiaque la position de la coupole droite du diaphragme : l’acquisition de données du volume cardiaque ne sera pratiquée que durant les cycles cardiaques coïncidant avec un diaphragme en position d’expirium. Les techniques 3D sont principalement utilisées pour l’analyse des cardiopathies congénitales17, ainsi que pour évaluer la morphologie et le trajet épicardiques des artères coronaires18.

Analyse de la fonction cardiaque 

Séquences ciné bSSFP des ventricules19 

Sa rapidité et le remarquable contraste qu’elle procure entre le muscle cardiaque et le sang circulant fait de cette séquence en écho de gradient la séquence de choix pour l’évaluation de la fonction des ventricules. Au contraire des images morphologiques, statiques, il s’agit d’une acquisition multi-phases de la même coupe myocardique (habituellement entre 25 et 35 phases par cycle cardiaque, en fonction de l’intervalle RR) permettant d’obtenir une image en mouvement – ou coupe ciné du ventricule. Ce type d’acquisition permet s’effectue sur plusieurs cycles cardiaques et requiert une apnée de 10 à 20 secondes. Il ne s’agit donc pas d’une imagerie en temps réel, contrairement à l’échocardiographie. La résolution spatiale, la définition de l’endocarde et la reproductibilité de la méthode sont en revanche supérieures en IRM, faisant d’elle le procédé d’imagerie de choix pour l’évaluation des volumes, de la masse et de la fonction ventriculaire par méthode de Simpson modifiée. L’avantage de l’IRM est d’autant plus évident dans l’évaluation du ventricule droit, difficile à visualiser entièrement en échocardiographie. Typiquement, on acquiert des images caractérisées par une épaisseur de coupe de 8–10 mm avec espacement de 0–2 mm, une résolution dans le plan de 1-2 x 1–2 mm et une résolution temporelle de l’ordre de 40 à 60 ms. Pour le ventricule gauche, les coupes standard sont la vue 4 cavités, 2 cavités et 3 cavités ou vue de la chambre de chasse. Un plan orthogonal à la vue 3 cavités est acquise afin de compléter l’évaluation de la chambre de chasse gauche et de la valve aortique. On effectue ensuite une série de 8 à 12 coupes en court axe des ventricules, parallèles au plan atrio-ventriculaire, couvrant tout le volume ventriculaire de la base à l’apex. Pour le ventricule droit, on effectue une vue 2 cavités en traçant un axe perpendiculaire à la vue 4 cavités et reliant le milieu de l’anneau tricuspide à l’apex du ventricule droit. Une vue simultanée de la chambre de réception et de la chambre de chasse du ventricule droit peut ensuite être construite, de même qu’une seconde vue orthogonale de la chambre de chasse droite, permettant l’évaluation de la valve pulmonaire. On ajoute une série de coupes ciné axiales pures destinées à rechercher des anomalies segmentaires de la contraction de la paroi libre du ventricule droit, notamment en cas de suspicion de dysplasie arythmogène du ventricule droit. Dans le cas de cardiopathies congénitales, on ajoutera au besoin des coupes ciné supplémentaires, dont l’orientation sera adaptée à l’anatomie particulière du patient. Les vues utiles dans ce contexte sont par exemple les coupes des artères pulmonaires afin d’en évaluer le diamètre et la pulsatilité dans les tétralogies de Fallot opérées, et l’évaluation morphologique des conduits veineux dans les circulations de type Fontan, ou après la correction d’une transposition des gros vaisseaux par opération de Senning ou Mustard. En cas de suspicion de communication inter-auriculaire, l’acquisition d’une série de coupes ciné des oreillettes, parallèles au plan atrio-ventriculaire, est recommandée ; comme principe général dans les acquisitions destinées à rechercher une communication anormales entre deux cavités cardiaques, on choisira une épaisseur de coupe plus fine (5 à 8 mm) sans espace entre les coupes.

Séquences ciné ultra-rapides en respiration libre 

Ces séquences consistent à acquérir une coupe ciné complète du cœur en temps réel sans synchronisation à l’ECG. La séquence est de type bSSFP couplée à des techniques d’imagerie parallèle afin d’accélérer la vitesse d’acquisition. Inévitablement, les images produites ont une faible définition mais ont l’avantage de pouvoir évaluer les modifications de la contraction ventriculaire au cours du cycle respiratoire. La résolution temporelle est de l’ordre de 50-70 ms pour une résolution spatiale dans le plan de 2–3 x 2–3 mm. L’acquisition dure environ 20 secondes, s’étalant sur 3 cycles respiratoires. Ces séquences trouvent leur utilité dans la recherche d’interférence entre le ventricule droit et le ventricule gauche en cas de suspicion de constriction péricardique20.

Caractérisation tissulaire sans injection de produit de contraste 

Images en pondération T1

Il s’agit d’images morphologiques fixes acquises en diastole. La séquence utilisée est un écho de spin avec double pré-impulsion d’inversion destinée à annuler le signal du sang circulant (« sang noir »), identique à la séquence utilisée pour les séries de coupes morphologiques décrites ci-dessus. On l’applique en général sur des coupes en 4 cavités et en court axe, mais on peut y ajouter d’autres coupes adaptées à l’anatomie du patient, notamment pour mieux caractériser une tumeur myocardique. Alors que le signal du sang circulant est annulé et apparaît noir, la graisse, caractérisée par un temps de relaxation T1 court, apparaît hyperintense et le muscle cardiaque est d’intensité intermédiaire. Cette séquence trouve son utilité dans la caractérisation des masses et tumeurs myocardiques (intensité différente entre la tumeur et le muscle cardiaque normal, signal hyperintense caractéristique du lipome), dans la recherche d’une infiltration graisseuse du myocarde (cas avancés de dysplasie arythmogène du ventricule droit, transformation adipeuse d’une cicatrice d’infarctus), ainsi qu’en cas de pathologie péricardique (mesure de l’épaisseur du péricarde, hypointense et bordé par deux lignes hyperintense de graisse épicardique et péricardique). À noter que la présence de graisse peut être confirmée en répétant la même séquence, précédée d’une pré-impulsion destinée à supprimer le signal du tissu adipeux (impulsion d’inversion standard (STIR : short tau inversion recovery) ou sélective au spectre de fréquence du tissu adipeux (SPIR : spatial inversion recovery) ; TI 120-150 ms). Sur ces séquences de saturation de graisse (séquences en triple inversion), le signal hyperintense visualisé sur la séquence T1 standard est spécifiquement annulé et apparaît hypo-intense.

Images en pondération T2 

Il s’agit d’images morphologiques fixes acquises en diastole. Cette séquence d’écho de spin est destinée à mettre en évidence les structures liquidiennes, tirant parti du temps de relaxation T2 particulièrement long de l’eau. Cette séquence, caractérisée par un temps de répétition (TR) prolongé, classiquement de 2 intervalles RR, et d’un temps d’écho (TE) élevé, de l’ordre de 80 ms, est d’acquisition relativement longue. Pour en accélérer l’acquisition à 15-20 secondes, on utilise, comme pour les séquences pondérées en T1, la technique de turbo spin echo consistant à appliquer plusieurs impulsions d’inversion de 180 ° après l’écho initial afin de créer de multiples échos durant le même intervalle TR. Contrairement aux séquences T2 classiques (c’est-à-dire n’utilisant pas le turbo), pratiquées notamment en imagerie cérébrale, la séquence T2 en turbo spin echo tend à créer un signal paradoxalement hyperintense pour la graisse en raison d’interactions spin-spin particulières dans ce tissu (J-coupling), nécessitant d’y associer une pré-impulsion de saturation de graisse (séquence T2-STIR21). Cette séquence détecte l’œdème intramyocardique, notamment dans le contexte d’infarctus myocardique aigu ou de myocardite ; il se traduit par un signal hyperintense comparé au signal du myocarde sain. Un tel signal hyperintense en T2 peut également s’observer dans les tumeurs myocardiques mitotiquement actives, associée à de l’œdème tumoral, ou dans le myxome de l’oreillette, de composition riche en eau.

Surcharge en fer et hémochromatose 

En raison de ses propriétés ferromagnétiques, le fer présent dans les tissus engendre des inhomogénéités du champ magnétique. Ces inhomogénéités induisent une accélération du déphasage du spin des protons après impulsion de radiofréquence, résultant en une dégradation plus rapide du signal et un raccourcissement du temps T2*. Pratiquement, le myocarde surchargé en fer des patients souffrant d’hémochromatose présente, pour un TE identique, un signal moins intense que le myocarde d’un sujet normal. La valeur T2* du myocarde d’un patient peut être déterminée par relaxométrie IRM. Il s’agit d’une acquisition rapide en écho de gradient répétée une dizaine de fois sur une même coupe court axe mi-ventriculaire avec augmentation progressive du temps d’écho (TE), par exemple entre 2,5 ms et 18 ms (spoiled gradient multi-echo T2* sequence). L’intensité du signal myocardique est mesurée sur chaque coupe au niveau du septum inter-ventriculaire et sa valeur est rapportée graphiquement en fonction de la valeur du TE. La courbe obtenue est exponentielle de forme y = K&middote-TE/T2* où y représente l’intensité du signal et K est une constante. De cette relation, la valeur du T2* est calculée comme le temps nécessaire à la réduction de 63% de l’intensité du signal initial. Un T2* inférieur à 10 ms a été associé à une surcharge martiale sévère et cliniquement significative du myocarde22,23.

Produit de contraste IRM : le gadolinium 

Le gadolinium (64Gd) est un métal rare qui a la propriété de posséder sur sa dernière orbitale un nombre élevé de spins d’électrons non-appariés. Le champ magnétique produit par un électron est plus fort que celui produit par un proton (noyau d’hydrogène), et cet élément paramagnétique constitue donc un candidat idéal pour la fabrication de produits de contraste IRM, raccourcissant les temps de relaxation T1 et T2 des protons des tissus et modifiant l’intensité de leur signal. Toxique à l’état pur, le gadolinium doit être chélaté pour être rendu soluble et utilisable par voie intraveineuse en clinique. Différents chélateurs sont utilisés, et les chélateurs les plus fréquemment utilisés en clinique sont de petite taille (<1000 Da) et ont une distribution extracellulaire (DTPA24, le DO3A ou le BOPTA par exemple). Au niveau du cœur, le contraste est rapidement éliminé du myocarde normal, pauvre en tissu interstitiel, mais s’accumule de façon prolongée dans les zones de nécrose, de fibrose ou d’œdème, où l’espace interstitiel est pathologiquement augmenté. L’effet du gadolinium étant de raccourcir le temps de relaxation T1 des tissus où il s’accumule, les séquences d’IRM avec contraste sont en règle générale des séquences pondérées en T1. En raison de la cinétique particulière de distribution et d’élimination du gadolinium dans les tissus, le délai écoulé entre l’injection de contraste et l’acquisition des images est très important car il détermine le type d’informations, morphologiques ou fonctionnelles que procure la séquence. Ainsi, les images de premier passage du contraste dans le tissu myocardique sont à la base de l’imagerie de perfusion, les images acquises immédiatement (<2 minutes) après injection (rehaussement précoce) permettent l’identification de zones myocardiques avasculaires ou de thrombus intra-cavitaires, et les images acquises tardivement (10 à 15 minutes) après injection de gadolinium (rehaussement tardif) évaluent la présence de fibrose ou de cicatrices myocardiques. De plus, l’angiographie IRM nécessite l’injection de produit de contraste, et permet l’imagerie des structures vasculaires par des séquences d’acquisition tridimensionnelles rapides suivant la progression du bolus de gadolinium dans l’arbre vasculaire et les cavités cardiaques.

Imagerie de perfusion myocardique

L’imagerie de perfusion repose sur l’imagerie en temps réel du premier passage d’un bolus de gadolinium à travers le muscle cardiaque. Elle utilise des séquences rapides en écho de gradient (spoiled gradient echo ou bSSFP), précédées d’une pré�impulsion de saturation (90 °) afin d’accentuer la pondération T1 des images. Jusqu’à 3 coupes en court axe du ventricule gauche sont acquises lors de chaque battement cardiaque, ou jusqu’à 6 coupes tous les deux battements cardiaques. Les images sont acquises de préférence en diastole, ce qui peut s’avérer difficile pour les patients tachycardes, notamment durant un protocole de stress pharmacologique. Le bolus de contraste est injecté dans une veine de large calibre du pli du coude à l’aide d’une pompe automatique. La dose usuelle est de 0.05-0.1 millimoles de gadolinium par kilogramme de poids corporel. Pour la recherche d’ischémie myocardique, l’injection de gadolinium est effectuée au pic d’un stress pharmacologique par adénosine, dipyridamole ou dobutamine dans le but d’obtenir une vasodilatation coronaire, respectivement une contractilité myocardique, maximale. L’acquisition dynamique est débutée au moment de l’injection du contraste, qui rehausse successivement les cavités droites puis gauches avant de perfuser le muscle cardiaque. On observe alors la progression rapide du contraste, de l’épicarde vers l’endocarde chez le sujet sain, et le rehaussement du myocarde est homogène et complet à la fin du premier passage de gadolinium. Chez les patients atteints de maladie coronaire significative, les zones de déficit de perfusion sont caractérisées par un retard ou un déficit segmentaire du rehaussement myocardique. Une analyse semiquantitative peut être effectuée25,26. Dans certains centres, la même séquence de perfusion est répétée après quelques minutes, sans stress pharmacologique. L’analyse de la perfusion myocardique de repos est destinée à mieux différencier les artéfacts des déficits de perfusion réels en comparant les images de stress et les images de repos (en cas de sténose coronarienne significative, seul un déficit de perfusion au stress est en principe observé); elle ne permet pas toujours de trancher de façon définitive et n’est pas pratiquée dans tous les centres. Notons encore que l’imagerie de perfusion de repos est utilisée pour la caractérisation des masses et tumeurs myocardiques afin d’en préciser le degré de vascularisation ; une tumeur maligne, hypervasculaire, présentera par exemple un rehaussement important durant l’imagerie de perfusion.

Rehaussement précoce après injection de gadolinium 

Il s’agit d’une séquence en écho de gradient avec pré-impulsion d’inversion ou de saturation, acquise immédiatement après l’injection de produit de contraste. La dose maximale de gadolinium injectée durant un examen standard est de 0.2 millimoles par kilogramme de poids corporel. On retranchera de cette dose la quantité de produit de contraste déjà injectée durant la – ou les séquences de perfusion. Les images de rehaussement précoce montrent un myocarde complètement rehaussé et hyper-intense ; seules les zones non-vascularisées sont de signal hypo-intense. Dans le contexte d’un infarctus du myocarde récent, une zone hypo-intense au sein du territoire infarci révèle la présence d’obstruction microvasculaire27 (correspondant au phénomène de no-reflow angiographique) tandis qu’une zone hypointense située dans la cavité ventriculaire, accolée au myocarde akinétique, indique la présence d’un thrombus mural28. Pour le diagnostic de la myocardite aiguë, le recours aux séquences de rehaussement précoce est recommandée, afin d’identifier les zones d’inflammation myocardique, hyperémiques, qui apparaissent plus hyperintenses que le myocarde normal.

Rehaussement tardif après injection de gadolinium29,30 

Il s’agit d’une séquence acquise entre 10 et 20 minutes après l’injection du produit de contraste. Appelée également imagerie de la cicatrice, cette séquence a pour but de mettre en évidence les zones de fibrose intra-myocardique. L’étude de la cinétique du produit de contraste dans le tissu cardiaque montre que le contraste est rapidement évacué de l’espace interstitiel du myocarde normal alors que sa vidange est ralentie dans les zones de fibrose où l’espace extracellulaire est augmenté ; le temps de relaxation T1 des zones de fibrose se trouve donc significativement raccourci par rapport à celui du myocarde sain. La séquence utilisée est une séquence en écho de gradient (ou une séquence en bSSFP) précédée d’une impulsion d’inversion (180 °) permettant de maximiser le contraste T1. Afin de produire un contraste maximal entre les zones de myocarde sain et de fibrose, le réglage du temps d’inversion (TI), c'est-à-dire le délai entre la pré-impulsion d’inversion et le début de la séquence proprement dite, est déterminant ; il s’agit en effet de débuter la séquence au moment précis où le myocarde normal ne produit aucun signal alors que les zones de fibrose, dont le T1 est raccourci par accumulation de gadolinium, produisent un signal d’écho. On obtient ainsi un rapport d’intensité en théorie infini entre la fibrose et le myocarde normal (en pratique, ce rapport d’intensité est supérieur à 10), faisant de cette séquence un moyen très sensible pour la détection de la fibrose macroscopique. Le myocarde sain apparaît alors hypo-intense (noir) et les zones de fibrose hyper-intenses (claires) ; « ce qui est clair est mort » ("bright is dead") est le slogan mnémotechnique qui caractérise cette séquence. Cette séquence est également appropriée pour la recherche d’obstruction microvasculaire, apparaissant comme un noyau hypo-intense au sein d’une zone de fibrose hyper-intense. La résolution dans le plan des images de rehaussement tardif est de l’ordre de 1.4-1.8 x 1.4-1.8 mm avec une épaisseur de coupe de 5 à 8 mm31. Etant donné que la cinétique d’élimination du contraste dépend du poids du patient, de la dose de contraste injectée et du délai entre l’injection et l’acquisition des images, le choix du TI idéal doit tenir compte de ces paramètres ; il varie entre 250 et 400 ms. Très utilisée dans l’évaluation de la cardiopathie ischémique et de la viabilité myocardique, l’étude du rehaussement tardif est également importante dans l’évaluation des cardiomyopathies (recherche de fibrose interstitielle), des masses et tumeurs myocardiques (rehaussement homogène du fibrome, détection de zones de nécrose) et des pathologies péricardiques (rehaussement du péricarde enflammé).

Angiographie IRM 

Les séquences d’angiographie consistent en une acquisition volumétrique durant le transit d’un bolus de contraste. Grâce à la rapidité des scanners modernes, plusieurs angiographies peuvent être acquises durant une même apnée d’environ 20 secondes, permettant d’obtenir en une seule séquence une angiographie pulmonaire et une angiographie aortique ; on parle de séquences en quatre dimensions ou 4D. L’acquisition s’effectue en deux temps, avec dans un premier temps, l’acquisition avant l’injection de contraste de signaux de haute fréquence et de faible amplitude, codant pour la définition de l’image. Ces informations définissent les contours des structures intrathoraciques qui ne se modifient pas durant l’injection du produit de contraste ; leur acquisition n’est pas répétée durant la phase dynamique afin d’accroître la vitesse de l’acquisition durant cette seconde phase. Le second temps de la séquence débute donc avec l’injection par pompe automatique d’un bolus de produit de contraste. La progression du produit de contraste est suivie en temps réel et l’acquisition proprement dite débutée lorsque le produit de contraste atteint la cavité cardiaque ou la structure vasculaire à caractériser (on débutera par exemple une angiographie de l’arche aortique quand le bolus aura atteint le ventricule gauche). Lors de cette seconde phase de l’acquisition, seuls les signaux de haute amplitude et de basse fréquence qui codent pour le contraste de l’image seront acquis, de façon répétée, durant les 20 secondes suivant le déclenchement de la séquence. La superposition des deux acquisitions forme l’image finale, d’une résolution dans le plan de 1-2.5 x 1-2.5 mm. Elle pourra être reconstruite en trois dimensions ou visualisée en projection maximale selon les besoins diagnostiques.

Cartographies de flux 

Le signal IRM enregistré est un signal de radiofréquence complexe, comprenant une fréquence, une amplitude et une phase. Les séquences en écho de gradient peuvent être codées en phase de sorte à mesurer la vitesse du flux sanguin. Cette technique repose sur la propriété de déphasage du signal IRM par les protons en mouvement, proportionnel à la vitesse du flux dans le champ magnétique. Il est donc possible, par ces séquences particulières, d’encoder la vitesse d’un flux et d’en mesurer le débit. La précision de la mesure dépend de la position du plan d’acquisition, qui doit être placé perpendiculairement au flux mesuré. L’opérateur décide, pour une acquisition donnée, d’une vitesse d’encodage maximale (VENC), la vitesse causant un déphasage de signal de 180 °. Le VENC doit être légèrement supérieur (120%) à la vitesse du flux pour en obtenir une mesure optimale. S’il est trop grand, le signal obtenu sera de mauvaise qualité, avec un rapport signal sur bruit élevé. S’il est trop petit, un phénomène d’aliasing survient, empêchant toute évaluation quantitative du flux32. Ces mesures trouvent principalement leur application dans l’estimation de la sévérité de shunts intracardiaques, ou dans l’estimation de la sévérité d’insuffisances valvulaires aortique ou pulmonaire par mesure du volume régurgitant et de la fraction de régurgitation.

Tissue tagging et analyse de la déformation 

Les séquences de tagging ou « tatouage myocardique » ont pour but d’analyser et de quantifier la déformation du myocarde durant le cycle cardiaque, et sont utilisées conjointement avec des séquences ciné en bSSFP ou en écho de gradient. Le principe est de "tatouer" sur la coupe IRM une grille de référence à l’aide de pré-impulsions de saturation (90 °). Les bandes de saturation sont appliquées au début de l’acquisition et persistent pour la durée du cycle cardiaque. Comme le tissu saturé se déplace de façon cohérente avec la contraction myocardique sur une image ciné, la déformation de la grille au cours du cycle cardiaque reflète la déformation myocardique. Ces séquences ont montré leur utilité dans l’analyse de la déformation myocardique (strain, strain rate, torsion…)33 ainsi que dans l’analyse de la synchronisation de la contraction myocardique. La nécessité de disposer d’outils informatiques complexes pour quantifier la déformation limitent actuellement l’utilisation des ces techniques en routine clinique. Elles sont néanmoins parfois utilisées de façon qualitative, par exemple pour détecter une fusion des feuillets péricardiques viscéral et pariétal en cas de suspicion de péricardite constrictive ou de tumeur médiastinale invasive.

 

Partager cet article

Repost 0

commentaires

☼ Zorbax ☼

  • : CHOMOLANGMA
  • CHOMOLANGMA
  • : Réflexions sur le sens de la vie. Diversités culturelles et médiatiques.
  • Contact

ON EST QUAND???

Bonjour, nous sommes le

☼ Qui Cherche Trouve ☼

♫♪♪♫♪♫♪♫♪

Poussieres De Savoir ☼

POUSSEZ PAS !!!

 

 

http://t3.gstatic.com/images?q=tbn:ANd9GcSH1bqV_MZbKff7r4KH0YXDgokYKnPMVcS17_NVF7KeFFQmHvTYYQ

 

 

Depuis le 2 octobre 2008 ma paroisse a compté de fidèles :

 


Compteur Global


 

 

 

 

 

☼ Merci à vous tous ☼

 

 

http://t3.gstatic.com/images?q=tbn:ANd9GcRspNEZw03K2txVYJaQojtGiQPv2Ef2hRp76vnThpM_Xhg74AeH

 

 

   Et aussi, bien sûr, à notre superbe équipe  !!!!!!!...

 


☼ En Alcove ☼

☼♥☼♥☼


 

 

 

http://t0.gstatic.com/images?q=tbn:ANd9GcTJQdwhuv8K2KE2fv7sAcLYqokJ6fOwOos7DPEsrBY_tOyjkmt9

 

 

 

 

  http://t2.gstatic.com/images?q=tbn:ANd9GcTwbpFmC0lwUUqRVtxAgfCeDB97ON6I9jGDIVmmGwpa1bg_oeiS8w



 

 

 

http://t2.gstatic.com/images?q=tbn:ANd9GcQJFhyxpCtvTfrKTTq2Dnraqndo0k6KOOvR5B49c424W-RXGsXk

 

 

 

http://t0.gstatic.com/images?q=tbn:ANd9GcQ4lkR76RVvxlM2Pg0xGQLGN-vJ1IC1AeiO9YFoy0C2maJDnAlsEA

 

 

 

http://t3.gstatic.com/images?q=tbn:ANd9GcS3s1MTNys4JJ2XciWuydUFkX2s3uxVNEo4XLmDXWkNuzNwaF-I

 

 

 

http://t0.gstatic.com/images?q=tbn:ANd9GcRpmq_X4KGoOioCJ7IGFovNaZR1dl5V9wdd73SKUZoyRXImy8hQsA

 

 

 

http://t3.gstatic.com/images?q=tbn:ANd9GcT6vugj46xpPFClJ40ZcN_g83W39aPcCsnryaBlwulPqhMuSmHABA

 

 

 

http://t3.gstatic.com/images?q=tbn:ANd9GcS0rnZSUpbcqus_ag8-saWRw8BVp-nHBjwhG0FGGsPrBMTVGsKfUA

 

 

 

http://t3.gstatic.com/images?q=tbn:ANd9GcRiQjNvzjX7IEkfQYGG-KxW9pOVJoLjsP43P-wRgoCo6bmRIFfQ

 

 

 

http://t0.gstatic.com/images?q=tbn:ANd9GcSTia4A3P4_qwGWtAAvhY4S2BKgtk6tR_QCD3_DTBLqQwkYTLP7

 

 

 

http://t3.gstatic.com/images?q=tbn:ANd9GcRPAWH7AgJ7gN7ej2rrAa90b9jK2nWJtRcdmCSJLXifbDqpzt-GAQ

 

 

 

http://t1.gstatic.com/images?q=tbn:ANd9GcSnH3SFCsuDblli6D1AJMGBIO3SduYE7QocfhaOPh2CbcgSaTJm3g

 

 

 

http://t0.gstatic.com/images?q=tbn:ANd9GcS_x5rZOKIoXBMbTrRfiBoXYGA8_aG1puNXFnPK-vFSJb8S0TB-

 

 

 

http://t2.gstatic.com/images?q=tbn:ANd9GcT5xPsHZoCoc3Y10UzSIfZBJ1VM5yTf0rOp0z02qzAq29ZylEqp

 

 

 

http://t2.gstatic.com/images?q=tbn:ANd9GcSJYo3dfiA7rWKtAhGDKlIvNQBBfXfxpskBzCjE2VA_WnhL03zQ

 

 

 

http://t0.gstatic.com/images?q=tbn:ANd9GcRrs5cw6eknmiTVBcESn97krqvfndk10XJq35s-mUIxnoXepsHU2w

 

 

 

http://t2.gstatic.com/images?q=tbn:ANd9GcTtPoMny2WLrgyLYUkv0xzCHZ3BSe7txlE-Xe2XSz1rA4IRBQ-8

 

 

 

http://t2.gstatic.com/images?q=tbn:ANd9GcTzDbIU4QatTLNRgPQwPUcMDO8BtCGQMAkP46aQAp05yXC1m0y84g

 

 

 

http://t1.gstatic.com/images?q=tbn:ANd9GcS_sSIdV_qG7YiVCrY6Fze69BhzpdENouF0zUUp4OV8__EbU9Ad

 

 

 

http://t1.gstatic.com/images?q=tbn:ANd9GcQ9uJqfoOS-LjhgtT3qLp4AH34AojcYXzS6ifUoduwpXl2xR4cu

 

 

 

http://t0.gstatic.com/images?q=tbn:ANd9GcSBBpAVI8uqqXKRXeWLnFO9do5ObFZm7YxgxrJ7-EbHR2oDqLo0vQ

 

 

 

http://t1.gstatic.com/images?q=tbn:ANd9GcRDpZXNSZZorQeUMLz3DTA9hEU2rI_bxr_LT9c4T9nvHvAWTZjCGQ

 

 

 

http://t1.gstatic.com/images?q=tbn:ANd9GcQJxvHFLqQeIleqlsCzYw3aqr-0Y6eKQMVnyaA5me5hdAxIljVU

 

 

 

http://t2.gstatic.com/images?q=tbn:ANd9GcSC9dHlJXHSlla_xZ5T9EZytHwAWT-qbU_d19dTtxAXrGNihAXKlQ

 

 

 

http://t1.gstatic.com/images?q=tbn:ANd9GcR9uI2iDGC9O3GMDlf8NsxtxQx-Qp8sqHmOc5rb-zkptdYl27ct

 

 

 

http://t0.gstatic.com/images?q=tbn:ANd9GcRbZ3vVwEjZT_vYCN_egFTIwdBz6fqNL0Pg-y_Q61vxrmzGOpx_

 

 

 

http://t3.gstatic.com/images?q=tbn:ANd9GcQJ2rE3MpU2-7BbpUlr6UqYo4BmnNs_dvTC88BMslWtXGy7xpm4

 

 

 

http://t3.gstatic.com/images?q=tbn:ANd9GcQEpgxQwBFunGDiUIemTa46VNveEHAu-uA8FY-TsPaLWXJFd2s0

 

 

 

http://t0.gstatic.com/images?q=tbn:ANd9GcQTdXbqeHRkSO7KlYa4OkUya7gTOtG1LddYFWDuhmMG8TTBud38

 

 

 

http://t2.gstatic.com/images?q=tbn:ANd9GcTNv54UJcOf0QWIB4OraEz3h5BSPwvVpIDgtJO-zq0-MNAH1T-r

 

 

 

http://t0.gstatic.com/images?q=tbn:ANd9GcQQ4msZqs5YGyEvDc4xIBtl0glm2rQZ7LsilbzRNUFi1QmhSgwd

 

 

 

http://t2.gstatic.com/images?q=tbn:ANd9GcRadP8tzRToSi6YgV25tgPSiZuZH-m01ykcCd-vsvFtJOoai2ucTw

 

 

 

http://t1.gstatic.com/images?q=tbn:ANd9GcQWsJatoxZ24v32bG85ut1XPEPG4Fa5l6ApTX9VfC1X3_fQlO6t

 

 

 

http://t0.gstatic.com/images?q=tbn:ANd9GcSATYwKzSKWCjMx6cjBGrTkiC8C_lyJBimQ86hhDpKGyeWCgRFU5Q

 

 

 

http://t3.gstatic.com/images?q=tbn:ANd9GcRkni6wj2PqLxVIQnGL2w-Hh0Qdu5Q2vEiKSUXAJ7TKh9ePWQBm

 

 

 

http://t3.gstatic.com/images?q=tbn:ANd9GcQzo44WmwLEIvLwTyzq_jnCtqqHX6X_CIYel1kbk7vcUHUp-ieN

 

 

 

http://t3.gstatic.com/images?q=tbn:ANd9GcQJijg5RyUyd3NObMK9uNkIduA32k3nPJwfiuvaWrAi2Td5vyXO

 

 

 

http://t0.gstatic.com/images?q=tbn:ANd9GcSLXSS07G9gseceN7SeCwGRL0C6ij_75lYGEnDN1qwb_bEl9bGs

 

 

 

http://t2.gstatic.com/images?q=tbn:ANd9GcSgjOBb-AqrP0ZXPZSVl55yswE6dnD4uny-n0Xh-9mAuwm1GUq3

 

 

 

http://t2.gstatic.com/images?q=tbn:ANd9GcSZAb3DktAXiGznQlZB9az_nvD6AoLygDkDTstPDm_WBfLnJ3ltQg

 

 

 

http://t1.gstatic.com/images?q=tbn:ANd9GcRXwcTaTVudGTxMwVFFrGw1Z-j9x9D9inLKamTPCwUThDbPuEYpeA

 

 

 

http://t0.gstatic.com/images?q=tbn:ANd9GcTU6wtRoYw9X2-MMykBLzlVjXeRgi5rqzD5ck22QxWwI8h7QeNUQA

 

 

 

http://t2.gstatic.com/images?q=tbn:ANd9GcRpMUOK13Ots0UnbeCQLds3ixSZxNY9gFOfm65Bvc-pf6ZKAlWbzg

 

 

 

http://t0.gstatic.com/images?q=tbn:ANd9GcQhH-RzSe9GF29vGoZwod2tN7O-9mFfpWJX4bLt78JtJYMqI8w1rA

 

 

 

http://t1.gstatic.com/images?q=tbn:ANd9GcQxu-I9t3HJlWQ3e6bM41HAOc8j3Smoe-ahJN9OTRyzd6vOUOVF

 

 

 

http://t0.gstatic.com/images?q=tbn:ANd9GcQYkezUKlW0ttRviIW9f6NJHBcjJ-sUE4XMIic0ka6qkCguqsqWEQ

 

 

 

http://t3.gstatic.com/images?q=tbn:ANd9GcSLwoIa5Xuj4eEFEX5vzJFqlL0GIrwjAUDCWbZgf6ni2O6MUMuwHg

 

 

 

http://t0.gstatic.com/images?q=tbn:ANd9GcSmu_lhCfJa5L3JKT73eNWm5-DVlMMhgQ2zjDd5kmbF9S0PDwt0

 

 

 

http://t2.gstatic.com/images?q=tbn:ANd9GcTl9CWad5AcZHOfC-RgTWPbODkKY_C0DW3MZXkDUucqfvfZLDvJvQ

 

 

 

http://t1.gstatic.com/images?q=tbn:ANd9GcSSorC-n_GApivF90u5JfsOvUI44_E6pQ_gYw3Zv_SawrJlQ7U_OA

 

 

 

http://t1.gstatic.com/images?q=tbn:ANd9GcSHehPIU8WfymVyIehhOVdWyZ9Iby-7WygiZdxRqYoB6-t4uxfc

 

 

 

http://t0.gstatic.com/images?q=tbn:ANd9GcTHknIkIppczoDGtgqaDVGpF5vzTnPgO0XzesL14bXWKIidntgi

 

 

 

http://t0.gstatic.com/images?q=tbn:ANd9GcQ2gFiEiRrnRVPCVmgC8fP4RV_b4Cyut6pHRWot2zotTH_isSgx

 

 

 

http://t2.gstatic.com/images?q=tbn:ANd9GcRMnyl4ZznB4yj9tFflGmUrm8zxq1VAfdzbHlagdVlYHHs5AqI2Xw

 

 

 

http://t1.gstatic.com/images?q=tbn:ANd9GcSABiNYE2Ig0ORn0Dp6LWBs8FU1-eDuUfhJpaBhY3dBILcGkw7Y

 

 

 

http://t1.gstatic.com/images?q=tbn:ANd9GcQX6x3fLQO-eGD7Sdc__AFLjGRztfSRzdOgtJe_w_XI_qKOl_cQ

 

 

 

http://t2.gstatic.com/images?q=tbn:ANd9GcQWAfv06yKnlGGke983sE24US_BbpZ0xgnAp3yIh3eXvCRrRfxtgg

 

 

 

http://t3.gstatic.com/images?q=tbn:ANd9GcSguscboVOMXCDflSARG5UefcNGLsGZylvXKHJGK4ldNdG1xYiR

 

 

 

http://t2.gstatic.com/images?q=tbn:ANd9GcTVsXwe7MG_AOX5rUiFD0hVw9aHeILEWPB_3WS5456jt040weKpxQ

 

 

 

http://t2.gstatic.com/images?q=tbn:ANd9GcS14rgGXof16mpTbvNq37y9tGIxf38V3B4j5iFLZChBi8qMo0cC

 

 

 

http://t1.gstatic.com/images?q=tbn:ANd9GcRk338QqS34hcxTHah2whOwSbnEtO-yxxKutL5KPMcrWPKtCTUf

 

 

 

http://t1.gstatic.com/images?q=tbn:ANd9GcTQg04AvSsLnhDeWWl4-qLzPD5EX7xzuOAVEiswXHB9n5gRBOxj

 

 

 

http://t1.gstatic.com/images?q=tbn:ANd9GcQC715gVGqLwXFM7U94WtdKlMrAiHbkqIvJl2WJ6h_JMsUMfL622g

 

 

 

http://t3.gstatic.com/images?q=tbn:ANd9GcR4ku7jfXybpiE3fm21gXSpihSd_rjwxvIac8kqkj5TkIg3rLODrg

 

 

 

http://t1.gstatic.com/images?q=tbn:ANd9GcThGLPUz7SfnoPUPrFttXiSBuS3NYmV99axgZzgYDofBuo_RpfcUg

 

 

 

http://t3.gstatic.com/images?q=tbn:ANd9GcSqsjlV84iSMlkqfRlTaGiWfn6_nyGg91BQcNLZbGrRnn0-j3S4

 

 

 

http://t1.gstatic.com/images?q=tbn:ANd9GcSwkrLsv_IQh2wUOQ1DkYx-HwxeUOLNEtv8yCh59CnX_HbW5H3q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

☼ Quoi & Où ☼