Overblog
Editer l'article Suivre ce blog Administration + Créer mon blog
CHOMOLANGMA

Réflexions sur le sens de la vie. Diversités culturelles et médiatiques.

Amplificateur électronique (1).

Publié le 29 Avril 2010 par CHOMOLANGMA in TECHNOLOGIES-Industrie(Btp-élect - énergie...)

 

Amplificateur électronique
Un article de Wikipédia, l'encyclopédie libre.

 

Un amplificateur Hi-Fi à tubes.

 

 

Un amplificateur électronique (ou amplificateur, ou ampli) est un système électronique augmentant la tension et/ou l’intensité d’un signal électrique. L’énergie nécessaire à l’amplification est tirée de l’alimentation du système. Un amplificateur parfait ne déforme pas le signal d’entrée : sa sortie est une réplique exacte de l’entrée mais d’amplitude majorée.

Les amplificateurs électroniques sont utilisés dans quasiment tous les circuits électroniques : ils permettent d’élever un signal électrique, comme la sortie d’un capteur, vers un niveau de tension exploitable par le reste du système. Ils permettent aussi d’augmenter la puissance maximale disponible que peut fournir un système afin d’alimenter une charge comme une antenne ou une enceinte électroacoustique.

 

Historique 

Une audion de 1906.

 

 

Le premier amplificateur électronique fut réalisé en 1906 par l’inventeur américain Lee De Forest, à l’aide de la première version d’une de ses inventions : l’audion[1]. En 1908, Lee De Forest perfectionna l’audion en lui rajoutant une électrode, donnant ainsi naissance à la première triode[2],[3]. La triode fut vite perfectionnée par l’ajout d’une (pour la tétrode) puis de deux grilles supplémentaires, palliant certains effets indésirables, notamment l’effet « dynatron » (zone où le tube présente une résistance négative). Ce tube pentode est ensuite rapidement adopté pour la plupart des amplificateurs à tubes, pour son meilleur rendement. Les amplificateurs à tubes sont aussi connus sous le nom d’amplificateurs à « lampes », en raison de la forme des tubes et de la lumière qu’ils émettent lorsqu’ils fonctionnent (voir photo ci-contre).

 

 

Un Klystron.

 

 

Depuis le début des années 1960, grâce l’apparition des premiers transistors de puissance vraiment fiables et au coût réduit, la majorité des amplificateurs utilise des transistors[4]. On préfère les transistors aux tubes dans la majorité des cas car ils sont moins encombrants, fonctionnent à des tensions plus faibles et sont immédiatement opérationnels une fois mis sous tension, contrairement aux tubes électroniques qui nécessitent une dizaine de secondes de chauffage.

 

 

Quatre tubes de puissance « Electro Harmonix KT88 » à l'intérieur d'un amplificateur de guitare.

 

 

Les tubes sont toujours utilisés dans des applications spécifiques comme les amplificateurs audio, surtout ceux destinés aux guitares électriques[5], et les applications de « très » forte puissance ou à haute fréquence[6] comme pour les fours à micro-ondes, le chauffage par radiofréquence industriel, et l’amplification de puissance pour les émetteurs de radio et de télévision.

Dans le domaine des télécommunications spatiales demandant de fortes puissances, on utilise également des amplificateurs à klystron et des tubes à ondes progressives (ATOP). Il existe en outre des amplificateurs de type SSPA (Solid State Power Amplifier) embarqués à bord des satellites.

Principe de fonctionnement et théorie 


Schéma très simplifié d’un amplificateur

 

 

Un amplificateur électronique utilise un ou plusieurs composants actifs (transistor ou tube électronique) afin d’augmenter la puissance électrique du signal présent en entrée. Les composants actifs utilisés dans les amplificateurs électroniques permettent de contrôler leur courant de sortie en fonction d’une grandeur électrique (courant ou tension), image du signal à amplifier. Le courant de sortie des composants actifs est directement tiré de l’alimentation de l’amplificateur. Suivant la façon dont ils sont implémentés dans l’amplificateur, les composants actifs permettent ainsi d’augmenter la tension et/ou le courant du signal électrique d’entrée. Le principe de fonctionnement d’un amplificateur est présenté dans le schéma simplifié ci-contre. Ce schéma utilise un transistor bipolaire comme composant amplificateur, mais il peut être remplacé par un MOSFET ou un tube électronique. Le circuit de polarisation assurant le réglage de la tension au repos a été omis pour des raisons de simplification. Dans ce circuit, le courant produit par la tension d’entrée sera amplifié de β (avec β >> 1) par le transistor. Ce courant amplifié traverse alors la résistance de sortie et l’on récupère en sortie la tension − β.R.ie[7]. Avec ie le courant d’entrée et R la valeur de la résistance.

Les amplificateurs peuvent être conçus pour augmenter la tension (amplificateur de tension), le courant (amplificateur suiveur) ou les deux (amplificateur de puissance) d’un signal. Les amplificateurs électroniques peuvent être alimentés par une tension simple (une alimentation positive ou négative, et le zéro) ou une tension symétrique (une alimentation positive, une négative et le zéro). L’alimentation peut aussi porter le nom de « bus » ou « rail ». On parle alors de bus positif ou négatif et de rail de tension positive ou négative.

Les amplificateurs sont souvent composés de plusieurs étages disposés en série afin d’augmenter le gain global. Chaque étage d’amplification est généralement différent des autres afin qu’il corresponde aux besoins spécifiques de l’étage considéré. On peut ainsi tirer avantage des points forts de chaque montage tout en minimisant leurs faiblesses.

 

 

Représentation d'un quadripôle.
Représentation théorique d’un amplificateur de tension dont l’entrée et la sortie partagent le même zéro.
Bande passante à -3 dB.

 

 

Si l’on considère que l’alimentation d’un amplificateur est indépendante du signal d’entrée et de sortie de l’amplificateur, on peut représenter cet amplificateur par un quadripôle. Le formalisme des quadripôles permet d’obtenir une relation matricielle entre les courants et les tensions d’entrée et de sortie. Il a été introduit dans les années 1920 par le mathématicien allemand Franz Breisig. Dans le cas d’un amplificateur de tension, les grandeurs électriques sont définis par quatre paramètres : l’impédance d’entrée Ze, l’impédance de sortie Zs, le gain de transconductance G et le paramètre de réaction G12. On a alors :

{V_1\choose V_2}=\begin{pmatrix}Ze & G_{12}\\G & Zs\end{pmatrix}{I_1\choose I_2}.

Pour un amplificateur parfait, G12 est nul (la sortie n’influence pas l’entrée), Zs est également nul (la tension de sortie ne dépend pas du courant de sortie), et le gain G est constant. On a alors le gain de l’amplificateur :

\frac{V_2}{V_1}=\frac{G}{Ze}=cte .

En pratique ces conditions ne sont pas tout à fait respectées, entraînant de ce fait des caractéristiques altérées concernant la bande passante, le gain en puissance, le bruit dû au facteur température, ou encore la distorsion du signal. On évalue les performances d’un amplificateur en étudiant son rendement, sa linéarité, sa bande passante et le rapport signal sur bruit entre l’entrée et la sortie.

La « bande passante à -3 dB » (décibel) d’un amplificateur est la gamme de fréquences où le gain en tension de l’amplificateur est supérieur au gain maximum moins trois décibels[8]. Si on ne raisonne pas en décibel, cela correspond à la gamme de fréquences où le gain en tension est supérieur au gain maximum divisé par racine de deux[9], ce qui correspond à une division de la puissance fournie à la charge par deux[10],[11]. La bande passante est habituellement notée B ou BP. Occasionnellement on rencontre des bandes passantes plus larges, par exemple la bande passante à -6 dB, gamme de fréquences où le gain en tension est supérieur à la moitié du gain maximum.

 

 

Effet de la saturation sur la linéarité.

 

 

La linéarité d’un amplificateur correspond à sa capacité à garder constante la pente de la courbe donnant la tension de sortie en fonction de la tension d'entrée. Une limitation de linéarité vient de l’alimentation de l’amplificateur : la tension de sortie ne peut dépasser la tension d’alimentation de l’amplificateur. Lorsque cela arrive, on parle de saturation de l’amplificateur. La linéarité d’un amplificateur est aussi limitée par sa vitesse de balayage (ou slew rate) qui représente la vitesse de variation maximale qu’il peut reproduire. Lorsque la variation du signal d’entrée d’un amplificateur est supérieure à sa vitesse de balayage, sa sortie est une droite de pente SR.

 \mathrm{SR} = \max\left(\frac{dv_s(t)}{dt}\right) .

La vitesse de balayage est exprimée en V/µs.

Enfin, la caractéristique des éléments semiconducteurs n'est jamais totalement linéaire, et conduit à la distorsion harmonique. On réduit cette distorsion par la contre réaction (voir plus loin).

La distorsion dans les amplificateurs électroniques 

Un amplificateur doit fournir une tension de sortie ayant la même forme que le signal d'entrée, mais d'amplitude supérieure. Si la forme du signal de sortie (à l'amplitude près) est différente de la forme du signal d'entrée, on dit qu'il y a distorsion.

La distorsion d'amplitude 

Cette distorsion a lieu si la bande passante de l'amplificateur n'est pas suffisante pour amplifier l'ensemble des fréquences (spectre) composant le signal. Cependant, si le signal d'entrée est sinusoïdal, le signal de sortie le sera également.

La distorsion harmonique  

Cette distorsion est provoquée par un défaut de linéarité de l'amplificateur. Si le signal d'entrée est sinusoïdal, le signal de sortie ne l'est plus. Cette sinusoïde déformée peut être considérée comme la somme d'une sinusoïde pure ( fondamentale) et de sinusoïdes de fréquences multiples de cette fondamentale (harmoniques) . Le taux de distorsion harmonique sera fonction du rapport entre ces harmoniques et la fondamentale.

La distorsion de phase ou de temps de propagation

Le signal de sortie d'un amplificateur est composé généralement de plusieurs fréquences, qui devraient être amplifiées strictement en même temps. La forme d'un tel signal complexe ne sera plus conservée si le temps de propagation des fréquences qui le composent n'est pas le même. Ces retards sont peu audibles pour l'oreille. Cependant, si l'amplificateur doit amplifier des signaux numériques, cette distorsion devient très gênante et peut conduire à des erreurs sur les bits transmis et décodés. Pour cette raison, cette caractéristique est très importante pour les amplificateurs de signaux numériques. On quantifie cette distorsion en précisant les différences de retard en fonction de la fréquence. Il est aussi possible de préciser la courbe du déphasage en fonction de la fréquence. Cette courbe doit être une droite pour ne pas avoir de distorsion de propagation de groupe. Pour cette raison, les amplificateurs sans cette distorsion sont parfois qualifiés « à phase linéaire ».

La distorsion d'intermodulation

Si des étages d'amplification sont non linéaires, on observera en plus de la distorsion harmonique, l'apparition de « fréquences parasites » qui sont des combinaisons linéaires des fréquences composant le signal à amplifier. Ce type de défaut est très gênant pour les amplificateurs traitant de signaux radioélectriques, car ces fréquences parasites peuvent perturber les liaisons radio (voir intermodulation). Cette distorsion peut également être gênante pour les amplificateurs audio, car l'oreille pourra percevoir ces fréquences parasites qui sont surajoutées au signal.

Le bruit dans les amplificateurs électroniques

Effet du bruit sur un signal électrique.

 

 

En électronique, le bruit désigne les signaux aléatoires et non désirés, voire parasites, se superposant aux signaux utiles. Dans un amplificateur ces signaux parasites peuvent venir de son environnement ou des composants le constituant. Il existe cinq types de bruit en électronique : le bruit thermique, le bruit grenaille, le bruit de scintillation (« bruit flicker »), le bruit en créneaux et le bruit d'avalanche[12]. Il est possible de réduire le bruit dans un amplificateur en s’attaquant directement à ses origines (voir ci-dessous) mais aussi en limitant le plus possible la bande passante de l’amplificateur, afin d’éliminer le bruit présent en dehors de ses fréquences de travail[13].

Le bruit thermique  

Le bruit thermique, également nommé bruit de résistance, ou bruit Johnson ou bruit de Johnson-Nyquist est le bruit produit par l'agitation thermique des porteurs de charges, c’est-à-dire des électrons dans une résistance électrique en équilibre thermique. Le bruit thermique est un bruit blanc dont la densité spectrale de puissance dépend uniquement de la valeur de la résistance. Le bruit thermique peut être modélisé par une source de tension en série avec la résistance qui produit le bruit. On caractérise le bruit thermique d'un amplificateur, par sa « résistance équivalente de bruit », ou, pour un amplificateur RF, par le facteur de bruit, qui dépend de la température de la source de signal.

Le bruit thermique a été mesuré pour la première fois en 1927 par le physicien John Bertrand Johnson aux Bell Labs[14]. Son article Thermal Agitation of Electricity in Conductors montrait que des fluctuations statistiques se produisaient dans tous les conducteurs électriques, produisant une variation aléatoire de potentiel aux bornes de ce conducteur. Ce bruit thermique était donc identique pour toutes les résistances de la même valeur et n’était donc pas imputable à une fabrication médiocre. Johnson décrivit ses observations à son collègue Harry Nyquist qui fut capable d’en donner une explication théorique[15].

Commenter cet article